Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622801

RESUMO

Unicellular organisms are known to exert tight control over their cell size. In the case of diatoms, abundant eukaryotic microalgae, two opposing notions are widely accepted. On the one hand, the rigid silica cell wall that forms inside the parental cell is thought to enforce geometrical reduction of the cell size. On the other hand, numerous exceptions cast doubt on the generality of this model. Here, we monitored clonal cultures of the diatom Stephanopyxis turris for up to 2 yr, recording the sizes of thousands of cells, in order to follow the distribution of cell sizes in the population. Our results show that S. turris cultures above a certain size threshold undergo a gradual size reduction, in accordance with the postulated geometrical driving force. However, once the cell size reaches a lower threshold, it fluctuates around a constant size using the inherent elasticity of cell wall elements. These results reconcile the disparate observations on cell size regulation in diatoms by showing two distinct behaviors, reduction and homeostasis. The geometrical size reduction is the dominant driving force for large cells, but smaller cells have the flexibility to re-adjust the size of their new cell walls.

2.
Cell ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653236

RESUMO

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.

4.
Nature ; 622(7983): 562-573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673118

RESUMO

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Assuntos
Implantação do Embrião , Embrião de Mamíferos , Desenvolvimento Embrionário , Células-Tronco Embrionárias Humanas , Humanos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Fertilização , Gastrulação , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Células-Tronco Embrionárias Humanas/citologia , Trofoblastos/citologia , Saco Vitelino/citologia , Saco Vitelino/embriologia , Células Gigantes/citologia
5.
Nature ; 622(7981): 164-172, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674082

RESUMO

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.


Assuntos
Tolerância a Antígenos Próprios , Linfócitos T , Timo , Animais , Camundongos , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Tolerância a Antígenos Próprios/imunologia , Tolerância a Antígenos Próprios/fisiologia , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Tecido Parenquimatoso , Células Musculares , Células Endócrinas , Cromatina , Transcrição Gênica , Grelina
6.
Cell Rep ; 42(2): 112117, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790930

RESUMO

Astrocytes are essential for synapse formation, maturation, and plasticity; however, their function during developmental neuronal remodeling is largely unknown. To identify astrocytic molecules required for axon pruning of mushroom body (MB) γ neurons in Drosophila, we profiled astrocytes before (larva) and after (adult) remodeling. Focusing on genes enriched in larval astrocytes, we identified 12 astrocytic genes that are required for axon pruning, including the F-actin regulators Actin-related protein 2/3 complex, subunit 1 (Arpc1) and formin3 (form3). Interestingly, perturbing astrocytic actin dynamics does not affect their gross morphology, migration, or transforming growth factor ß (TGF-ß) secretion. In contrast, actin dynamics is required for astrocyte infiltration into the axon bundle at the onset of pruning. Remarkably, decreasing axonal adhesion facilitates infiltration by Arpc1 knockdown (KD) astrocytes and promotes axon pruning. Conversely, increased axonal adhesion reduces lobe infiltration by wild-type (WT) astrocytes. Together, our findings suggest that actin-dependent astrocytic infiltration is a key step in axon pruning, thus promoting our understanding of neuron-glia interactions during remodeling.


Assuntos
Actinas , Proteínas de Drosophila , Animais , Actinas/metabolismo , Astrócitos/metabolismo , Axônios/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo
7.
Nat Commun ; 14(1): 480, 2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717559

RESUMO

Diatoms are unicellular algae characterized by silica cell walls. These silica elements are known to be formed intracellularly in membrane-bound silica deposition vesicles and exocytosed after completion. How diatoms maintain membrane homeostasis during the exocytosis of these large and rigid silica elements remains unknown. Here we study the membrane dynamics during cell wall formation and exocytosis in two model diatom species, using live-cell confocal microscopy, transmission electron microscopy and cryo-electron tomography. Our results show that during its formation, the mineral phase is in tight association with the silica deposition vesicle membranes, which form a precise mold of the delicate geometrical patterns. We find that during exocytosis, the distal silica deposition vesicle membrane and the plasma membrane gradually detach from the mineral and disintegrate in the extracellular space, without any noticeable endocytic retrieval or extracellular repurposing. We demonstrate that within the cell, the proximal silica deposition vesicle membrane becomes the new barrier between the cell and its environment, and assumes the role of a new plasma membrane. These results provide direct structural observations of diatom silica exocytosis, and point to an extraordinary mechanism in which membrane homeostasis is maintained by discarding, rather than recycling, significant membrane patches.


Assuntos
Diatomáceas , Diatomáceas/metabolismo , Parede Celular/metabolismo , Organelas/metabolismo , Dióxido de Silício/química , Exocitose
8.
Angew Chem Int Ed Engl ; 62(4): e202214041, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36385565

RESUMO

In this study, the precise positioning and alignment of arrays of two different guest molecules in a crystalline host matrix has been engineered and resulted in new optically active materials. Sub-nm differences in the diameters of two types of 1D channels are sufficient for size-selective inclusion of dyes. Energy transport occurs between the arrays of different dyes that are included in parallel-positioned nanochannels by Förster resonance energy transfer (FRET). The color of individual micro-sized crystals are dependent on their relative position under polarized light. This angular-dependent behavior is a result of the geometrically constrained orientation of the dyes by the crystallographic packing of the host matrix and is concentration dependent.

9.
PLoS One ; 17(10): e0269348, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36282813

RESUMO

The characterization of ancient DNA in fossil bones is providing invaluable information on the genetics of past human and other animal populations. These studies have been aided enormously by the discovery that ancient DNA is relatively well preserved in the petrous bone compared to most other bones. The reasons for this better preservation are however not well understood. Here we examine the hypothesis that one reason for better DNA preservation in the petrous bone is that fresh petrous bone contains more DNA than other bones. We therefore determined the concentrations of osteocyte cells occluded inside lacunae within the petrous bone and compared these concentrations to other bones from the domestic pig using high resolution microCT. We show that the concentrations of osteocyte lacunae in the inner layer of the pig petrous bone adjacent to the otic chamber are about three times higher (around 95,000 lacunae per mm3) than in the mastoid of the temporal bone (around 28,000 lacunae per mm3), as well as the cortical bone of the femur (around 27,000 lacunae per mm3). The sizes and shapes of the lacuna in the inner layer of the petrous bone are similar to those in the femur. We also show that the pig petrous bone lacunae do contain osteocytes using a histological stain for DNA. We therefore confirm and significantly expand upon previous observations of osteocytic lacuna concentrations in the petrous bone, supporting the notion that one possible reason for better preservation of ancient DNA in the petrous bone is that this bone initially contains at least three times more DNA than other bones. Thus during diagenesis more DNA is likely to be preserved in the petrous bone compared to other bones.


Assuntos
DNA Antigo , Osteócitos , Humanos , Suínos , Animais , Osteócitos/patologia , Osso Petroso/diagnóstico por imagem , Osso e Ossos , DNA/genética
10.
Front Immunol ; 13: 849701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911772

RESUMO

Breast tumors and their derived circulating cancer cells express the leukocyte ß2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.


Assuntos
Neoplasias Pulmonares , Linfócitos T Citotóxicos , Animais , Linhagem Celular Tumoral , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina , Microambiente Tumoral
11.
Nat Biotechnol ; 40(9): 1360-1369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35449415

RESUMO

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).


Assuntos
Neoplasias , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Camundongos , Neoplasias/genética , Análise de Célula Única/métodos , Software , Transcriptoma/genética , Sequenciamento do Exoma
12.
Cell ; 185(8): 1373-1388.e20, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35381199

RESUMO

Systemic sclerosis (scleroderma, SSc) is an incurable autoimmune disease with high morbidity and mortality rates. Here, we conducted a population-scale single-cell genomic analysis of skin and blood samples of 56 healthy controls and 97 SSc patients at different stages of the disease. We found immune compartment dysfunction only in a specific subtype of diffuse SSc patients but global dysregulation of the stromal compartment, particularly in a previously undefined subset of LGR5+-scleroderma-associated fibroblasts (ScAFs). ScAFs are perturbed morphologically and molecularly in SSc patients. Single-cell multiome profiling of stromal cells revealed ScAF-specific markers, pathways, regulatory elements, and transcription factors underlining disease development. Systematic analysis of these molecular features with clinical metadata associates specific ScAF targets with disease pathogenesis and SSc clinical traits. Our high-resolution atlas of the sclerodermatous skin spectrum will enable a paradigm shift in the understanding of SSc disease and facilitate the development of biomarkers and therapeutic strategies.


Assuntos
Escleroderma Sistêmico , Células Cultivadas , Fibroblastos/metabolismo , Fibrose , Humanos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Escleroderma Sistêmico/tratamento farmacológico , Escleroderma Sistêmico/genética , Pele/metabolismo
13.
Front Immunol ; 13: 1041552, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36895258

RESUMO

αLß2 (LFA-1) mediated interactions with ICAM-1 and ICAM-2 predominate leukocyte-vascular interactions, but their functions in extravascular cell-cell communications is still debated. The roles of these two ligands in leukocyte trafficking, lymphocyte differentiation, and immunity to influenza infections were dissected in the present study. Surprisingly, double ICAM-1 and ICAM-2 knock out mice (herein ICAM-1/2-/- mice) infected with a lab adapted H1N1 influenza A virus fully recovered from infection, elicited potent humoral immunity, and generated normal long lasting anti-viral CD8+ T cell memory. Furthermore, lung capillary ICAMs were dispensable for both NK and neutrophil entry to virus infected lungs. Mediastinal lymph nodes (MedLNs) of ICAM-1/2-/- mice poorly recruited naïve T cells and B lymphocytes but elicited normal humoral immunity critical for viral clearance and effective CD8+ differentiation into IFN-γ producing T cells. Furthermore, whereas reduced numbers of virus specific effector CD8+ T cells accumulated inside infected ICAM-1/2-/- lungs, normal virus-specific TRM CD8+ cells were generated inside these lungs and fully protected ICAM-1/2-/- mice from secondary heterosubtypic infections. B lymphocyte entry to the MedLNs and differentiation into extrafollicular plasmablasts, producing high affinity anti-influenza IgG2a antibodies, were also ICAM-1 and ICAM-2 independent. A potent antiviral humoral response was associated with accumulation of hyper-stimulated cDC2s in ICAM null MedLNs and higher numbers of virus-specific T follicular helper (Tfh) cells generated following lung infection. Mice selectively depleted of cDC ICAM-1 expression supported, however, normal CTL and Tfh differentiation following influenza infection, ruling out essential co-stimulatory functions of DC ICAM-1 in CD8+ and CD4+ T cell differentiation. Collectively our findings suggest that lung ICAMs are dispensable for innate leukocyte trafficking to influenza infected lungs, for the generation of peri-epithelial TRM CD8+ cells, and long term anti-viral cellular immunity. In lung draining LNs, although ICAMs promote lymphocyte homing, these key integrin ligands are not required for influenza-specific humoral immunity or generation of IFN-γ effector CD8+ T cells. In conclusion, our findings suggest unexpected compensatory mechanisms that orchestrate protective anti-influenza immunity in the absence of vascular and extravascular ICAMs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Camundongos , Animais , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Linfócitos T CD8-Positivos , Antivirais , Vírus da Influenza A Subtipo H1N1/metabolismo , Moléculas de Adesão Celular/metabolismo , Imunidade Celular , Antígenos CD/metabolismo
14.
Nat Commun ; 12(1): 5363, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508093

RESUMO

The activity of epiphyseal growth plates, which drives long bone elongation, depends on extensive changes in chondrocyte size and shape during differentiation. Here, we develop a pipeline called 3D Morphometric Analysis for Phenotypic significance (3D MAPs), which combines light-sheet microscopy, segmentation algorithms and 3D morphometric analysis to characterize morphogenetic cellular behaviors while maintaining the spatial context of the growth plate. Using 3D MAPs, we create a 3D image database of hundreds of thousands of chondrocytes. Analysis reveals broad repertoire of morphological changes, growth strategies and cell organizations during differentiation. Moreover, identifying a reduction in Smad 1/5/9 activity together with multiple abnormalities in cell growth, shape and organization provides an explanation for the shortening of Gdf5 KO tibias. Overall, our findings provide insight into the morphological sequence that chondrocytes undergo during differentiation and highlight the ability of 3D MAPs to uncover cellular mechanisms that may regulate this process.


Assuntos
Condrócitos/fisiologia , Fator 5 de Diferenciação de Crescimento/metabolismo , Lâmina de Crescimento/crescimento & desenvolvimento , Animais , Animais Recém-Nascidos , Diferenciação Celular , Proliferação de Células , Embrião de Mamíferos , Feminino , Fator 5 de Diferenciação de Crescimento/economia , Lâmina de Crescimento/citologia , Lâmina de Crescimento/diagnóstico por imagem , Imageamento Tridimensional , Microscopia Intravital , Camundongos Knockout , Modelos Animais , Tíbia/citologia , Tíbia/efeitos dos fármacos , Tíbia/crescimento & desenvolvimento , Microtomografia por Raio-X
15.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-34088837

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, which is refractory to all currently available treatments and bears dismal prognosis. About 70% of all PDAC cases harbor mutations in the TP53 tumor suppressor gene. Many of those are missense mutations, resulting in abundant production of mutant p53 (mutp53) protein in the cancer cells. Analysis of human PDAC patient data from The Cancer Genome Atlas (TCGA) revealed a negative association between the presence of missense mutp53 and infiltration of CD8+ T cells into the tumor. Moreover, CD8+ T cell infiltration was negatively correlated with the expression of fibrosis-associated genes. Importantly, silencing of endogenous mutp53 in KPC cells, derived from mouse PDAC tumors driven by mutant Kras and mutp53, down-regulated fibrosis and elevated CD8+ T cell infiltration in the tumors arising upon orthotopic injection of these cells into the pancreas of syngeneic mice. Moreover, the tumors generated by mutp53-silenced KPC cells were markedly smaller than those elicited by mutp53-proficient control KPC cells. Altogether, our findings suggest that missense p53 mutations may contribute to worse PDAC prognosis by promoting a more vigorous fibrotic tumor microenvironment and impeding the ability of the immune system to eliminate the cancer cells.


Assuntos
Carcinoma Ductal Pancreático/genética , Fibrose , Mutação de Sentido Incorreto , Neoplasias Pancreáticas/genética , Proteína Supressora de Tumor p53/genética , Animais , Linfócitos T CD8-Positivos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
16.
Cancers (Basel) ; 13(10)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069191

RESUMO

The mechanisms by which the nuclear lamina of tumor cells influences tumor growth and migration are highly disputed. Lamin A and its variant lamin C are key lamina proteins that control nucleus stiffness and chromatin conformation. Downregulation of lamin A/C in two prototypic metastatic lines, B16F10 melanoma and E0771 breast carcinoma, facilitated cell squeezing through rigid pores, and reduced heterochromatin content. Surprisingly, both lamin A/C knockdown cells grew poorly in 3D spheroids within soft agar, and lamin A/C deficient cells derived from spheroids transcribed lower levels of the growth regulator Yap1. Unexpectedly, the transendothelial migration of both cancer cells in vitro and in vivo, through lung capillaries, was not elevated by lamin A/C knockdown and their metastasis in lungs was even dramatically reduced. Our results are the first indication that reduced lamin A/C content in distinct types of highly metastatic cancer cells does not elevate their transendothelial migration (TEM) capacity and diapedesis through lung vessels but can compromise lung metastasis at a post extravasation level.

17.
ACS Nano ; 15(4): 7563-7574, 2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33872494

RESUMO

Nature-inspired nanosized formulations based on an imageable, small-sized inorganic core scaffold, on which biomolecules are assembled to form nanobiomimetics, hold great promise for both early diagnostics and developed therapeutics. Nevertheless, the fabrication of nanobiomimetics that allow noninvasive background-free mapping of pathological events with improved sensitivity, enhanced specificity, and multiplexed capabilities remains a major challenge. Here, we introduce paramagnetic glyconanofluorides as small-sized (<10 nm) glycomimetics for immunotargeting and sensitive noninvasive in vivo19F magnetic resonance imaging (MRI) mapping of inflammation. A very short T1 relaxation time (70 ms) of the fluorides was achieved by doping the nanofluorides' solid crystal core with paramagnetic Sm3+, resulting in a significant 8-fold enhancement in their 19F MRI sensitivity, allowing faster acquisition and improved detectability levels. The fabricated nanosized glycomimetics exhibit significantly enhanced uptake within activated immune cells, providing background-free in vivo mapping of inflammatory activity, demonstrated in both locally induced inflammation and clinically related neuropathology animal models. Fabricating two types of nanofluorides, each with a distinct chemical shift, allowed us to exploit the color-like features of 19F MRI to map, in real time, immune specificity and preferred targetability of the paramagnetic glyconanofluorides, demonstrating the approach's potential extension to noninvasive multitarget imaging scenarios that are not yet applicable for nanobiomimetics based on other nanocrystal cores.


Assuntos
Imageamento por Ressonância Magnética , Nanopartículas , Animais , Fluoretos
18.
Nature ; 593(7857): 119-124, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731940

RESUMO

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Assuntos
Técnicas de Cultura Embrionária , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Técnicas In Vitro , Organogênese , Animais , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Feminino , Gastrulação , Masculino , Camundongos , Fatores de Tempo , Útero
19.
Prog Neurobiol ; 197: 101939, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33152398

RESUMO

Gaucher disease (GD) is currently the focus of considerable attention due primarily to the association between the gene that causes GD (GBA) and Parkinson's disease. Mouse models exist for the systemic (type 1) and for the acute neuronopathic forms (type 2) of GD. Here we report the generation of a mouse that phenotypically models chronic neuronopathic type 3 GD. Gba-/-;Gbatg mice, which contain a Gba transgene regulated by doxycycline, accumulate moderate levels of the offending substrate in GD, glucosylceramide, and live for up to 10 months, i.e. significantly longer than mice which model type 2 GD. Gba-/-;Gbatg mice display behavioral abnormalities at ∼4 months, which deteriorate with age, along with significant neuropathology including loss of Purkinje neurons. Gene expression is altered in the brain and in isolated microglia, although the changes in gene expression are less extensive than in mice modeling type 2 disease. Finally, bone deformities are consistent with the Gba-/-;Gbatg mice being a genuine type 3 GD model. Together, the Gba-/-;Gbatg mice share pathological pathways with acute neuronopathic GD mice but also display differences that might help understand the distinct disease course and progression of type 2 and 3 patients.


Assuntos
Doença de Gaucher , Células de Purkinje , Animais , Encéfalo , Modelos Animais de Doenças , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Camundongos
20.
Mol Cell ; 80(5): 876-891.e6, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217318

RESUMO

Stress granules (SGs) are cytoplasmic assemblies of proteins and non-translating mRNAs. Whereas much has been learned about SG formation, a major gap remains in understanding the compositional changes SGs undergo during normal disassembly and under disease conditions. Here, we address this gap by proteomic dissection of the SG temporal disassembly sequence using multi-bait APEX proximity proteomics. We discover 109 novel SG proteins and characterize distinct SG substructures. We reveal dozens of disassembly-engaged proteins (DEPs), some of which play functional roles in SG disassembly, including small ubiquitin-like modifier (SUMO) conjugating enzymes. We further demonstrate that SUMOylation regulates SG disassembly and SG formation. Parallel proteomics with amyotrophic lateral sclerosis (ALS)-associated C9ORF72 dipeptides uncovered attenuated DEP recruitment during SG disassembly and impaired SUMOylation. Accordingly, SUMO activity ameliorated C9ORF72-ALS-related neurodegeneration in Drosophila. By dissecting the SG spatiotemporal proteomic landscape, we provide an in-depth resource for future work on SG function and reveal basic and disease-relevant mechanisms of SG disassembly.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Proteína C9orf72/metabolismo , Grânulos Citoplasmáticos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Animais , Proteína C9orf72/genética , Linhagem Celular Tumoral , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/patologia , Dipeptídeos/genética , Dipeptídeos/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Camundongos , Proteômica , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...